Read CHAPTER III of Opportunities in Aviation , free online book, by Arthur Sweetser Gordon Lamont, on ReadCentral.com.

TRAINING AN AIRPLANE PILOT

Any ordinary, active man can fly. That is to say, any man with nerve enough to take a cold bath or drive an automobile down Fifth Avenue can maintain himself in the air with an airplane, and turn into a good pilot with practice. In other words, the regular man who rides in the Subway, who puts on a straw hat on May 15th or 20th, as the case may be, has not only the right to be in the air, but owes it to himself to learn to fly.

Any one with a reasonable amount of intelligence can be made a good pilot. He need not hold a college degree, or even a high-school diploma, tucked away in some forgotten place. If he has the sense of touch of the normal man, the sense of balance of a normal man, can skate, or ride a bicycle, he should be in the air, flying. There is a difference between the war or army pilot and the peace-time flier yet to be developed.

War flying calls for highly trained men, a man who has proved himself fit for combat under all conditions, a man who can shoot straight, think quickly, and turn immediately. He must possess a little more than the average nerve, perhaps, or he must be trained to the point where shooting and maneuvering are the natural reactions to certain circumstances. He must be able to stand altitudes of 20,000 feet; he must be quick with his machine-gun, have a knowledge of artillery, and know, in fact, a little about everything on the front he is trying to cover. This requires training and aptitude.

The day is coming for the man who wants to make a short pleasure flight, or go from town to town, touring by air. He need know nothing of machine-guns or warfare. He may never want to do anything more hazardous in the way of maneuver than a gentle turn. His maximum altitude would be perhaps 8,000 feet. He would in all probability be flying a machine whose “ceiling” was 10,000 feet, and he might never care to tour at a height higher than 2,000 feet. There is no reason why he should go high. One can have all the thrills in the world at 2,000 feet, follow the ground more easily, without wasting time or gasolene in attempts to fly high enough so that the earth looks like another planet below.

Let us illustrate a bit from the Royal Air Force of Canada, which is as good as any other example. The experience of the flying service of one country has been essentially that of another country, and we Americans may yet learn of the air from the English. In England the air is just another medium of travel, as much a medium as the ground and water but that is, of course, another story.

In 1917 the Royal Flying Corps, later incorporated into the Royal Air Force, came to Canada to take up the instruction of Canadian boys for flying in France. Americans enlisted with the pick of the Canadian youth, and droves were sent overseas. Very soon the cream had been skimmed off and there came a time when material was scarce. Meanwhile the war raged, and there was no option but to take drafted men from all sections, Montreal in particular. Many could not speak intelligible English, and few had enjoyed any educational advantages. The men who came as cadets to be trained as pilots in 1918 graded much lower in personal and physical qualifications than the type of the previous year. And yet these same drafted men, who had withstood for three and a half years the call of their country, had more control over their machines at the end of their course than the men of the year before.

At the end of four, five, or six hours’ solo these men could do all the high maneuvers, commonly thought dangerous, such as the barrel roll, the loop, the stall turn, the Immelmann turn. An astounding showing compared to the boys of 1917, who were forbidden to stunt and who rarely disobeyed the orders. In our American service we had specially selected men. They were college men, tested, qualified, and picked. But our men and it’s no reflection on them seldom did their higher maneuvers with less than fifty hours of solo flying.

There is just one answer it is a matter entirely of training.

It might be said that the Canadian casualties on the Texas flying-fields near Fort Worth during the winter of 1917-18, when the Royal Air Force occupied two airdromes, were the cause of comment all over the country. There were fifty fatalities in twenty weeks of flying, and machine after machine came down in a fatal spinning-nose dive, or tail spin, as the Americans speak of the spin.

Shortly after the Royal Air Force returned to its airdromes in Canada in the middle of April the Gosport system of flying training, which had been used successfully in England, was begun on the Curtiss J.B-type training-plane. The result was an immediate and material decrease in fatal accidents. In July, 1918, there was one fatality for every 1,760 hours of flying, and by October fatalities had been reduced to one in every 5,300 hours of flying. That is a remarkable achievement, as official data from other centers of training show one death in a flying accident for every 1,170 hours.

Briefly, the Gosport system is a graduated method of flying instruction. The cadet is led by easy steps through the earlier part of the training, and only after he has passed aerial tests in the simpler methods of control is he allowed to continue with the rest of his course and “go solo.” The scheme provides that before he goes solo he must have spun, and shown that he can take his instructor out of a spin. Only then is he considered fit to go on his own.

“Dangerous” and “Safe” as terms to describe flying technique gave way to wrong and right. There was built up under sound instruction one of the best schools of flying in North America, the School of Special Flying, at Armour Heights, Ontario. There is no reason why there should not be established in this country a number of such schools, under men who have had army experience, to train great numbers of civilian fliers within the next few years. There is going to be a strong demand for the best flying instruction that can be given. It should be noted that only the most perfect system of flying instruction should be used, for the best is safest, and the safest, no matter how expensive, is comparatively cheap.

There is no reason why there should be an extended period of ground instruction for the non-military pilot of the future. He should be taught the elementary principles of the theory of flight, should know something about the engine with which he is going to fly, and understand some things about the rigging of his airplane. The details could come to him in constant association with the airplane before, during, and after each flight. No time need be spent on such subjects as artillery observation, machine-gunnery, wireless, bombing, photography, patrol work, and other subjects of a purely military nature, on which so much stress has been laid in training army pilots.

“What is an airplane?” Before going ahead with the method of Gosport instruction every pupil is given a lecture on the ground in which he is asked that question. One definition which was passed out to us in Canada was, “An airplane is a machine....” At this point the flight sergeant in charge of rigging would look dreamily into the distance. “An airplane is a machine....” he would begin again with an air of utter despondency. That was certainly no news to cadets. They had an idea that it might be a machine, and wanted to know more about it.

“An airplane is a machine with lift-generating surfaces attached to a frame which carries an engine, fuel, aviator, and devices by which he steers, balances, and controls his craft,” the mournful flight sergeant was finally able to convince them.

Lift-generating surfaces these are the bases of all flying. Every one knows, for instance, that a paper dart, instead of falling directly to the floor, sails in a gliding angle for some distance before crashing. Lift is generated under those plane surfaces moving through the air and the lift keeps that paper dart gliding. Little eddies of air are compressed under its tiny wings. Imagine an engine in the dart, propelling it at some speed. Instead of having to nose down to get enough speed to generate lift under its wings, the dart would be able to fly on the level, or even climb a bit.

Just so with an airplane. A gliding airplane about to land with power shut off is that paper dart on a large scale. The airplane flying is the dart with power. To make the airplane safe to fly, to give control to the pilot so that he may steer it where he wants to, there is a rudder, moved by a rudder-bar under the foot of the pilot. It is impossible to turn a swiftly moving airplane in the air by the rudder alone. It must be banked to prevent skidding, even as a race-track is banked high on the turns. On its side an airplane will cushion its own bank of proper degree by the use of ailerons. These ailerons are sections of the wing-tips which may be moved either up or down. They are counterbalanced so that movement of the left down gives you the right aileron up. With left aileron down, the lift of the left wing is increased, and it tips up; at the same time the lift of the right wing is decreased, and it sags down. In that way the airplane is tipped up for a bank. These ailerons, wing sections, really, are controlled by a device known as the joy-stick in the cockpit.

We have seen how an airplane is made to tip and turn. Before a machine is under control we must be able to climb, or come down to the ground for a landing. Vertical control of an airplane is attained by the use of elevators, flaps on the tail plane acting as horizontal rudders. A pull-back on the joy-stick lifts the flaps, raises the nose of the machine, and causes it to gain height. Push the joy-stick forward, the elevators are turned down, and the machine goes into a dive for the ground. In making many maneuvers all three controls, rudder, ailerons, and elevators, are used at once and the pilot feels his way with the machine, guiding it with the stick and the rudder-bar.

After the explanation of the use of these controls, and their demonstration on the machine as it awaits its turn in the air, the pupil is taken up for his first ride strictly a joy ride, and not always joyous for those who take every chance to be seasick. After he has a glimpse of what the ground looks like from the air, and has recovered from his first breathless sweep off the ground, the pupil is given a lesson in the demonstration of controls. The instructor explains through a speaking-tube attached to his helmet the very simple principles. Forward with the stick to nose down, back to lift it up, left stick tilts the machine over on its left wing, and right stick banks it to the right. Right stick and right rudder, in proper proportions, turn the machine to the right, left stick and left rudder to take the machine out of the turn and fly it straight again.

Then the wonderful moment when the instructor calls through the tube, “All right, now you take the stick.” You clutch it as though it were the one straw in a great ocean. “Not so hard,” comes the voice. “Now put your feet gently on the rudder-bar. Not so rough; easier, man, easier on that stick!” For a glorious moment she is yours, you hold her nose up, and you are flying an airplane tearing over the checkerboard country far below.

Then, like the voice of doom: “Now, do a gentle turn to the left. Don’t forget to give her rudder and stick at the same time. That’s right. Begin the motion with your feet and hands at the same time.” The world swings furiously, and down below that left wing-tip a little farm sways gently.

“Now you are in a gentle turn feel that breeze on your cheek? We are side-slipping; give her a touch more of left rudder. Not so much. Now your nose is dropping; pull back on the stick. Back! Not forward! Back! Now your nose is too high; take us out, and don’t forget that opposite stick and rudder.

“Now fly straight for a few minutes. Your right wing is low bring it up. Your nose is too high. Now it is too low. Keep it so that the radiator cap is above the horizon. That’s right.”

So goes the business of instruction through the lessons on straight flying, gentle turns, misuse of controls, side-slipping, and approach, take-off, and landing. The trips should average thirty-five or forty minutes, long enough to teach the lesson, but not long enough to weary the pupil. Here at take-off and landing the pupil finds himself up against the most difficult part of his training. He has the problem of stopping a large machine weighing a ton or more, traveling at a landing speed of forty to fifty miles an hour, with the center of gravity just balanced over the under-carriage. An error in judgment will pile the machine up on its nose with a crashed propeller, and perhaps two broken wings and damaged under-carriage. Not a dangerous accident for the pilot, but very humiliating.

Army practice has shown that a pupil should have about sixty practice landings dual, that is to say, coached and helped by his instructor. By this time he has a total flying time of six to twelve hours. At this point, before he goes solo, the Gosport system provides that he shall be taken to a reasonably safe height for the practice of high maneuvers. At a height of say two thousand five hundred feet the instructor shows him how a stalled machine falls into a spin. The question of teaching higher maneuvers to civilian pilots is open to argument.

As soon as the instructor shuts off the engine the machine rapidly loses flying speed. It reaches a point where there is not enough air passing over the wing surfaces to support the plane in the air. Her nose begins to drop, and he pulls the stick back. The stick is full back, she stalls, topples over on her side, and plunges nose first. The instructor kicks on full rudder, and the world whirls below like a top, and the air whistles, swish, swish, swish, in the wires at every turn. Stick forward, opposite rudder, and she comes out so fast that your head swims. That is the spin.

“Now you try it,” says the instructor. For there is nothing to a spin unless a machine does not come out of it a rare thing if the plane is properly handled. The pupil is now ready to go solo, and for the first couple of hours’ solo flying he does nothing but make circuits around the field, landing and taking off. Then his instructor takes him dual for forced-landing practice, business of getting down into a field within gliding range by gliding turns. Then the pupil tries it solo, throttling down for the practice, a most valuable experience which increases the confidence of the pilot. He learns to use his own judgment and to gauge height and ground distance as it appears from the air.

After three or four hours of solo time the pupil is scheduled for another demonstration of higher maneuvers, spinning and the stall turn. For the stall turn the pilot noses the machine down to get an air speed of seventy-five miles an hour. A little bank, stick back, she rears into the air with her nose to the sky and propeller roaring. Full rudder and throttle off. In silence she drops over on her side into the empty air; blue sky and green fields flash by in a whirl. She hangs on her back while the passengers strain against the safety belts, and then her nose plunges. The air shrieks in the wires as the ground comes up at terrific speed.

It is time for the pupil to go up for his solo spin under the plan adopted for army purposes. Up, up, up the pupil flies, three thousand feet, and the ground below looks soft and green. Would it be soft to hit in a spin from that height? It would not. Have people ever spun that far? he wonders. They have. Have machines ever failed to come out of a spin and killed the pilot? The answer is too obvious. With faith in nothing in particular, and with his mind made up that one can die but once in a spin, he stalls and spins her and comes out. He is so surprised and exhilarated that he tries it again before he loses his nerve. Yet again. The pupil is a pilot, the air has no terrors, and he has learned the oldest truth of flying, that there is nothing to a spin unless you don’t come out.

The natural result of training a pupil along those lines is that he graduates rapidly into a good stunting pilot. He realizes that he cannot tempt the devil at three hundred feet and hope to live, but he takes a good altitude, throws his machine upside down, and knows that, given enough air, he must come out. He does come out unless he loses complete control of his mind and body. With fifteen hours of solo flying the pupil has really become a pilot. He is beginning to show that he can control his machine. From then on it is a question of the polishing of the nice points, making his forced landings perfect, not side-slipping a foot on his vertical banks, and coming out of spin so that he always faces the airdrome all of which distinguish the good pilot from the poor pilot.