Read PIRACY PREFERRED: CHAPTER II of The Black Star Passes , free online book, by John Wood Campbell, on

Five men were seated about the Morey library, discussing the results of the last raid, in particular as related to Arcot and Morey. Fuller, and President Morey, as well as Dr. Arcot, senior, and the two young men themselves, were there. They had consistently refused to tell what their trip had revealed, saying that pictures would speak for them. Now they turned their attention to a motion picture projector and screen that Arcot junior had just set up. At his direction the room was darkened; and he started the projector. At once they were looking at the three dimensional image of the mail-room aboard the air liner.

Arcot commented: “I have cut out a lot of useless film, and confined the picture to essentials. We will now watch the pirate at work.”

Even as he spoke they saw the door of the mail-room open a bit, and then, to their intense surprise, it remained open for a few seconds, then closed. It went through all the motions of opening to admit someone, yet no one entered!

“Your demonstration doesn’t seem to show much yet, son. In fact, it shows much less than I had expected,” said the senior Arcot. “But that door seemed to open easily. I thought they locked them!”

“They did, but the pirate just burned holes in them, so to save property they leave ’em unlocked.”

Now the scene seemed to swing a bit as the plane hit an unusually bad air bump, and through the window they caught a glimpse of one of the circling Air Guardsmen. Then suddenly there appeared in the air within the room a point of flame. It hung in the air above the safe for an instant, described a strangely complicated set of curves; then, as it hung for an instant in mid-air, it became a great flare. In an instant this condensed to a point of intensely brilliant crimson fire. This described a complex series of curves and touched the top of the safe. In an inconceivably short time, the eight-inch thickness of tungsto-iridium alloy flared incandescently and began to flow sluggishly. A large circle of the red flame sprang out to surround the point of brilliance, and this blew the molten metal to one side, in a cascade of sparks.

In moments, the torch had cut a large disc of metal nearly free; seemingly on the verge of dropping into the safe. Now the flame left the safe, again retracting itself in that uncanny manner, no force seeming either to supply it with fuel or to support it thus, though it burned steadily, and worked rapidly and efficiently. Now, in mid-air, it hung for a second.

“I’m going to work the projector for a few moments by hand so that you may see this next bit of film.” Arcot moved a small switch and the machine blinked, giving a strange appearance to the seemingly solid images that were thrown on the screen.

The pictures seemed to show the flame slowly descending till it again touched the metal. The tungsto-iridium glowed briefly; then, as suddenly as the extinguishing of a light, the safe was gone! It had disappeared into thin air! Only the incandescence of the metal and the flame itself were visible.

“It seems the pirate has solved the secret of invisibility. No wonder the Air Guardsmen couldn’t find him!” exclaimed Arcot, senior.

The projector had been stopped exactly on the first frame, showing the invisibility of the safe. Then Arcot backed it up.

“True, Dad,” he said, “but pay special attention to this next frame.”

Again there appeared a picture of the room, the window beyond, the mail clerk asleep at his desk, everything as before, except that where the safe had been, there was a shadowy, half visible safe, the metal glowing brightly. Beside it there was visible a shadowy man, holding the safe with a shadowy bar of some sort. And through both of them the frame of the window was perfectly visible, and, ironically, an Air Guardsman plane.

“It seems that for an instant his invisibility failed here. Probably it was the contact with the safe that caused it. What do you think, Dad?” asked Arcot, junior.

“It does seem reasonable. I can’t see off-hand how his invisibility is even theoretically possible. Have you any ideas?”

“Well, Dad, I have, but I want to wait till tomorrow night to demonstrate them. Let’s adjourn this meeting, if you can all come tomorrow.”

The next evening, however, it seemed that it was Arcot himself who could not be there. He asked Morey, junior, to tell them he would be there later, when he had finished in the lab.

Dinner was over now, and the men were waiting rather impatiently for Arcot to come. They heard some noise in the corridor, and looked up, but no one entered.

“Morey,” asked Fuller, “what did you learn about that gas the pirate was using? I remember Arcot said he would have some samples to analyze.”

“As to the gas, Dick found out but little more than we had already known. It is a typical organic compound, one of the metal radical type, and contains one atom of thorium. This is a bit radioactive, as you know, and Dick thinks that this may account in part for its ability to suspend animation. However, since it was impossible to determine the molecular weight, he could not say what the gas was, save that the empirical formula was C_TH H_O_N_. It broke down at a temperature of only 89 deg. centigrade. The gases left consisted largely of methane, nitrogen, and methyl ether. Dick is still in the dark as to what the gas is.” He paused, then exclaimed: “Look over there!”

The men turned with one accord toward the opposite end of the room, looked, and seeing nothing particularly unusual, glanced back rather puzzled. What they then saw, or better, failed to see, puzzled them still more. Morey had disappeared!

“Why why where ohhh! Quick work, Dick!” The senior Arcot began laughing heartily, and as his astonished and curious companions looked toward him, he stopped and called out, “Come on, Dick! We want to see you now. And tell us how it’s done! I rather think Mr. Morey here I mean the visible one is still a bit puzzled.”

There was a short laugh from the air certainly there could be nothing else there then a low but distinct click, and both Morey and Arcot were miraculously present, coming instantaneously from nowhere, if one’s senses could be relied on. On Arcot’s back there was strapped a large and rather hastily wired mechanism one long wire extending from it out into the laboratory. He was carrying a second piece of apparatus, similarly wired. Morey was touching a short metal bar that Arcot held extended in his hand, using a table knife as a connector, lest they get radio frequency burns on making contact.

“I’ve been busy getting the last connection of this portable apparatus rigged up. I have the thing in working order, as you see or rather, didn’t see. This other outfit here is the thing that is more important to us. It’s a bit heavy, so if you’ll clear a space, I’ll set it down. Look out for my power supply there that wire is carrying a rather dangerously high E.M.F. I had to connect with the lab power supply to do this, and I had no time to rig up a little mechanism like the one the pirate must have.

“I have duplicated his experiment. He has simply made use of a principle known for some time, but as there was no need for it, it hasn’t been used. It was found back in the early days of radio, as early as the first quarter of the twentieth century, that very short wavelengths effected peculiar changes in metals. It was shown that the plates of tubes working on very short waves became nearly transparent. The waves were so short, however, that they were economically useless. They would not travel in usable paths, so they were never developed. Furthermore, existing apparatus could not be made to handle them. In the last war they tried to apply the idea for making airplanes invisible, but they could not get their tubes to handle the power needed, so they had to drop it. However, with the tube I recently got out on the market, it is possible to get down there. Our friend the pirate has developed this thing to a point were he could use it. You can see that invisibility, while interesting, and a good thing for a stage and television entertainment, is not very much of a commercial need. No one wants to be invisible in any honest occupation. Invisibility is a tremendous weapon in war, so the pirate just started a little private war, the only way he could make any money on his invention. His gas, too, made the thing attractive. The two together made a perfect combination for criminal operations.

“The whole thing looks to me to be the work of a slightly unbalanced mind. He is not violently insane; probably just has this one particular obsession. His scientific bump certainly shows no sign of weakness. He might even be some new type of kleptomaniac. He steals things, and he has already stolen far more than any man could ever have any need of, and he leaves in its place a ‘stock’ certificate in his own company. He is not violent, for hasn’t he carefully warned the men not to use the C-32L mask? You’ll remember his careful instructions as to how to revive the people!

“He has developed this machine for invisibility, and naturally he can fly in and out of the air guard, without their knowing he’s there, provided their microphonic detectors don’t locate him. I believe he uses some form of glider. He can’t use an internal combustion engine, for the explosions in the cylinders would be as visible as though the cylinders were made of clear quartz. He cannot have an electric motor, for the storage cells would weigh too much. Furthermore, if he were using any sort of prop, or a jet engine, the noise would give him away. If he used a glider, the noise of the big plane so near would be more than enough to kill the slight sounds. The glider could hang above the ship, then dive down upon it as it passed beneath. He has a very simple system of anchoring the thing, as I discovered to my sorrow. It’s a powerful electro-magnet which he turns on when he lands. The landing deck of the big plane was right above our office aboard, and I found my watch was doing all sorts of antics today. It lost an hour this morning, and this afternoon it gained two. I found it was very highly magnetized I could pick up needles with the balance wheel. I demagnetized it; now it runs all right.

“But to get back, he anchors his ship, then, leaving it invisible, he goes to the air lock, and enters. He wears a high altitude suit, and on his back he has a portable invisibility set and the fuel for his torch. The gas has already put everyone to sleep, so he goes into the ship, still invisible, and melts open the safe.

“His power supply for the invisibility machine seems to be somewhat of a problem, but I think I would use a cylinder of liquid air, and have a small air turbine to run a high voltage generator. He probably uses the same system on a larger scale to run his big machine on the ship. He can’t use an engine for that either.

“That torch of his is interesting, too. We have had atomic hydrogen welding for some time, and atomic hydrogen releases some 100,000 calories per mole of molecular hydrogen; two grains of gas give one hundred thousand calories. Oxygen has not been prepared in any commercial quantity in the atomic state. From watching that man’s torch, from the color of the flame and other indications, I gather that he uses a flame of atomic oxygen-atomic hydrogen for melting, and surrounds it with a preheating jacket of atomic hydrogen. The center flame probably develops a temperature of some 4000 deg. centigrade, and will naturally make that tungsten alloy run like water.

“As to the machine here it is, as I said, a machine which impresses very high frequencies on the body it is connected with. This puts the molecules in vibration at a frequency approaching that of light, and when the light impinges upon it, it can pass through readily. You know that metals transmit light for short distances, but in order that the light pass, the molecules of metal must be set in harmonic vibration at a rate approaching the frequency of light. If we can impress such a vibration on a piece of matter, it will then transmit light very freely. If we impress this vibration on the matter, say the body, electrically, we get the same effect and the body becomes perfectly transparent. Now, since it is the vibration of the molecules that makes the light pass through the material, it must be stopped if we wish to see the machine. Obviously it is much easier to detect me here among solid surroundings, than in the plane high in the sky. What chance has one to detect a machine that is perfectly transparent when there is nothing but perfectly transparent air around it? It is a curious property of this vibrational system of invisibility that the index of refraction is made very low. It is not the same as that of air, but the difference is so slight that it is practically within the limits of observation error; so small is the difference that there is no ‘rainbow’ effect. The difference of temperature of the air would give equal effect.

“Now, since this vibration is induced by radio impulse, is it not possible to impress another, opposing radio impulse, that will overcome this tendency and bring the invisible object into the field of the visible once more? It is; and this machine on the table is designed to do exactly that. It is practically a beam radio set, projecting a beam of a wavelength that alone would tend to produce invisibility. But in this case it will make me visible. I’m going to stand right here, and Bob can operate that set.”

Arcot strode to the middle of the room, and then Morey turned the reflector of the beam set on him. There was a low snap as Arcot turned on his set, then he was gone, as suddenly as the coming of darkness when a lamp is extinguished. He was there one moment, then they were staring at the chair behind him, knowing that the man was standing between them and it and knowing that they were looking through his body. It gave them a strange feeling, an uncomfortable tingling along the spine. Then the voice it seemed to come from the air, or some disembodied ghost as the invisible man called to Morey.

“All right, Bob, turn her on slowly.”

There was another snap as the switch of the disrupter beam was turned on. At once there was a noticeable fogginess in the air where Arcot had been. As more and more power was turned into the machine, they saw the man materialize out of thin air. First he was a mere shadowy outline that was never fully above the level of conscious vision. Then slowly the outlines of the objects behind became dimmer and dimmer, as the body of the man was slowly darkened, till at last there was only a wavering aura about him. With a snap Morey shut off his machine and Arcot was gone again. A second snap and he was solid before them. He had shut off his apparatus too.

“You can see now how we intend to locate our invisible pirate. Of course we will depend on directional radio disturbance locating devices to determine the direction for the invisibility disrupter ray. But you are probably marvelling at the greatness of the genius who can design and construct this apparatus all in one day. I will explain the miracle. I have been working on short wave phenomena for some time. In fact, I had actually made an invisibility machine, as Morey will testify, but I realized that it had no commercial benefits, so I didn’t experiment with it beyond the laboratory stunt stage. I published some of the theory in the Journal of the International Physical Society and I wouldn’t be surprised to learn that the pirate based his discovery on my report.

“I am still working on a somewhat different piece of apparatus that I believe we will find very relevant to this business. I’ll ask you to adjourn after tonight’s meeting for another twenty-four hours till I can finish the apparatus I am working on. It is very important that you be here, Fuller. I am going to need you in the work to follow. It will be another problem of design if this works out, as I hope it will.”

“I’ll certainly make every effort to be here, Arcot,” Fuller assured him.

“I can promise you a tough problem as well as an interesting one.” Arcot smiled. “If the thing works, as I expect it to, you’ll have a job that will certainly be a feather for your cap. Also it will be a change.”

“Well, with that inducement, I’ll certainly be here. But I think that pirate could give us some hints on design. How does he get his glider ten miles up? They’ve done some high-altitude gliding already. The distance record took someone across the Atlantic in 2009, didn’t it? But it seems that ten miles straight up is a bit too steep for a glider. There are no vertical air currents at that height.”

“I meant to say that his machine is not a true glider, but a semi-glider. He probably goes up ten miles or more with the aid of a small engine, one so small it probably takes him half a day to get there. And it would be easy for a plane to pass through the lower traffic lanes, then, being invisible, mount high and wait for the air liner. He can’t use a very large engine, for it would drag him down, but one of the new hundred horsepower jobs would weigh only about fifty pounds. I think we can draw a pretty good picture of his plane from scientific logic. It probably has a tremendous wingspread and a very high angle of incidence to make it possible to glide at that height, and the engine and prop will be almost laughably small.”

The next evening the men got together for dinner, and there was considerable speculation as to the nature of the discovery that Arcot was going to announce, for even his father had no knowledge of what it was. The two men worked in separate laboratories, except when either had a particularly difficult problem that might be solved by the other. All knew that the new development lay in the field of short wave research, but they could not find out in what way it concerned the problem in hand.

At last the meal was over, and Arcot was ready to demonstrate.

“Dad, I believe that you have been trying to develop a successful solar engine. One that could be placed in the wings of a plane to generate power from the light falling on that surface. In all solar engines what is the greatest problem to be solved?”

“Well, the more I investigate the thing, the more I wonder which is the greatest. There are a surprising number of annoying problems to be met. I should say, though, that the one big trouble with all solar engines, eliminating the obvious restriction that they decidedly aren’t dependable for night work, is the difficulty of getting an area to absorb the energy. If I could get enough area, I could use a very low efficiency and still have cheap power, for the power is absolutely free. The area problem is the greatest difficulty, no doubt.”

“Well,” Arcot junior said quietly, “I think you have a fairly good area to use, if you can only harness the energy it absorbs. I have really developed a very efficient solar engine. The engine itself requires no absorbing area, as I want to use it; it takes advantage of the fact that the Earth is absorbing quintillions of horsepower. I have merely tapped the power that the Earth has already absorbed for me. Come here.”

He led the way down the corridor to his laboratory, and switched on the lights. On the main laboratory bench was set up a complicated apparatus of many tubes and heavy bus bar connectors. From the final tube two thin wires ran to a long tubular coil. To the left of this coil was a large relay switch, and a rheostat control.

“Turn on the relay, Dad, then slowly rotate the controller to the left. And remember that it is rather powerful; I know this doesn’t look like a solar engine, and nine o’clock at night seems a peculiar hour to demonstrate such a thing, but I’ll guarantee results probably more than you expect.”

Dr. Arcot stepped up to the controls and closed the switch. The lights dimmed a bit, but immediately brightened again, and from the other end of the room came a low, steady hum as the big transformer took up the load.

“Well, from the sound of that ten K.W. transformer there, if this engine is very efficient we ought to get a terrific amount of power out of it.” Dr. Arcot was smiling amusedly at his son. “I can’t very well control this except by standing directly in front of it, but I suppose you know what you’re doing.”

“Oh, this is a laboratory model, and I haven’t gotten the thing into shape really. Look at the conductors that lead to the coil; they certainly aren’t carrying ten K.W.”

Dr. Arcot slowly rotated the rheostat. There was a faint hum from the coil; then it was gone. There seemed to be no other result. He rotated it a bit more; a slight draught sprang up within the room. He waited, but when nothing more startling occurred, he gave the rheostat a sharp turn. This time there was absolutely no doubt as to the result. There was a roar like a fifty-foot wind tunnel, and a mighty blast of cold air swept out of that coil like a six-inch model of a Kansas cyclone. Every loose piece of paper in the laboratory came suddenly alive and whirled madly before the blast of air that had suddenly leaped out. Dr. Arcot was forced back as by a giant hand; in his backward motion his hand was lifted from the relay switch, and with a thud the circuit opened. In an instant the roar of sound was cut off, and only a soft whisper of air told of the furious blast that had been there a moment before.

The astonished physicist came forward and looked at the device a moment in silence, while each of the other men watched him. Finally he turned to his son, who was smiling at him with a twinkle in his eye.

“Dick, I think you have ‘loaded the dice’ in a way that is even more lucrative than any other method ever invented! If the principle of this machine is what I think it is, you have certainly solved the secret of a sufficiently absorbing area for a solar engine.”

“Well,” remarked the elderly Morey, shivering a bit in the chill air of the room, “loaded dice have long been noted for their ability to make money, but I don’t see how that explains that working model of an Arctic tornado. Burr it’s still too cold in here. I think he’ll need considerable area for heat absorption from the sun, for that engine certainly does cool things down! What’s the secret?”

“The principle is easy enough, but I had considerable difficulty with the application. I think it is going to be rather important though ”

“Rather important,” broke in the inventor’s father, with a rare display of excitement. “It will be considerably more than that. It’s the biggest thing since the electric dynamo! It puts airplanes in the junk heap! It means a new era in power generation. Why, we’ll never have to worry about power! It will make interplanetary travel not only possible, but commercially economical.”

Arcot junior grinned broadly. “Dad seems to think the machine has possibilities! Seriously, I believe it will antiquate all types of airplanes, prop or jet. It’s a direct utilization of the energy that the sun is kindly supplying. For a good many years now men have been trying to find out how to control the energy of atoms for air travel, or to release the energy of the constitution of matter.

“But why do it at all? The sun is doing it already, and on a scale so gargantuan that we could never hope nor desire to approach it. Three million tons of matter go into that colossal furnace every second of time, and out of that comes two and a half decillion ergs of energy. With a total of two and a half million billion billion billions of ergs to draw on, man will have nothing to worry about for a good many years to come! That represents a flood of power vaster than man could comprehend. Why try to release any more energy? We have more than we can use; we may as well tap that vast ocean of power.

“There is one thing that prevents us getting it out, the law of probability. That’s why Dad mentioned loaded dice, for dice, as you know, are the classical example of probability when they aren’t loaded. Once they are loaded, the law still holds, but the conditions are now so changed that it will make the problem quite different.”

Arcot paused, frowning, then resumed half apologetically, “Excuse the lecture but I don’t know how else to get the thought across. You are familiar with the conditions in a liter of helium gas in a container a tremendous number of molecules, each dashing along at several miles a second, and an equal number dashing in the opposite direction at an equal speed. They are so thickly packed in there, that none of them can go very far before it runs into another molecule and bounces off in a new direction. How good is the chance that all the molecules should happen to move in the same direction at the same time? One of the old physicists of Einstein’s time, a man named Eddington, expressed it very well:

’If an army of monkeys were playing on typewriters they might write all the books in the British Museum. The chance of their doing so is decidedly more favorable than the chance that all the molecules in a liter of gas should move in the same direction at the same time.’

The very improbability of this chance is the thing that is making our problem appear impossible.

“But similarly it would be improbable impossible according to the law of chance to throw a string of aces indefinitely. It is impossible unless some other force influences the happening. If the dice have bits of iridium stuck under the six spots, they will throw aces. Chance makes it impossible to have all the molecules of gas move in the same direction at the same time unless we stack the chances. If we can find some way to influence them, they may do so.

“What would happen to a metal bar if all the molecules in it decided to move in the same direction at the same time? Their heat motion is normally carrying them about at a rate of several miles a second, and if now we have them all go in one way, the entire bar must move in that direction, and it will start off at a velocity as great as the velocity of the individual molecules. But now, if we attach the bar to a heavy car, it will try to start off, but will be forced to drag the car with it, and so will not be able to have its molecules moving at the same rate. They will be slowed down in starting the mass of the car. But slowly moving molecules have a definite physical significance. Molecules move because of temperature, and lack of motion means lack of heat. These molecules that have been slowed down are then cold; they will absorb heat from the air about them, and since the molecule of hydrogen gas at room temperature is moving at about seven miles a second, when the molecules of the confined gas in our car, or the molecules of the metal bar are slowed down to but a few hundred miles an hour, their temperature drops to some hundreds of degrees below zero, and they absorb energy very rapidly, for the greater the difference in temperature, the greater the rate of heat absorption.

“I believe we will be able to accelerate the car rapidly to a speed of several miles a second at very high altitudes, and as we will be able to use a perfectly enclosed streamlined car, we should get tremendous speeds. We’ll need no wings, of course, for with a small unit pointed vertically, we’ll be able to support the car in the air. It will make possible a machine that will be able to fly in reverse and so come to a quick stop. It will steer us or it will supply us with electrical power, for we merely have to put a series of small metal bars about the circumference of the generator, and get a tremendously powerful engine.

“For our present need, it means a tremendously powerful engine and one that we can make invisible.

“I believe you can guess the source of that breeze we had there? It would make a wonderful air-conditioning unit.”

“Dick Arcot,” began Morey, his voice tight with suppressed excitement, “I would like to be able to use this invention. I know enough of the economics of the thing, if not its science, to know that the apparatus before us is absolutely invaluable. I couldn’t afford to buy the rights on it, but I want to use it if you’ll let me. It means a new era in transcontinental air travel!”

He turned sharply to Fuller. “Fuller, I want you to help Arcot with the ship to chase the Pirate. You’ll get the contract to design the new airliners. Hang the cost. It’ll run into billions but there will be no more fuel bills, no oil bills, and the cost of operation will be negligible. Nothing but the Arcot short wave tubes to buy and each one good for twenty-five thousand hours service!”

“You’ll get the rights on this if you want them, of course,” said Arcot quietly. “You’re maintaining these laboratories for me, and your son helped me work it out. But if Fuller can move over here tomorrow, it will help things a lot. Also I’d like to have some of your best mechanics to make the necessary machines, and to start the power units.”

“It’s done,” Morey snapped.